
OTIC FILE COPY

* NAVAL POSTGRADUATE SCHOOL
o Monterey, California

,-, OCT 0 11990

THSI

A PERFORMANCE STUDY OF THE CONCURRENCY
CONTROL ALGORITHMS IN

HIERARCHICAL NETWORK WITH
PARTITIONED DATABASE

by

Shin, Eon Seok

March 1990

Thesis Advisor: Chyan Yang

Approved for public release;distribution is unlimited

Unclassified
security classlt-cai:en of this ,'2e

REPORT l)OCUNIENT iON PAGE

I a Re'ort Securav CiasTfcaion I. nclassified lb Restr~ctive \larkings

2a Securir Classflication Authority 3 Distribution .vailabtlity of Report

2b Declaosiicauon Do\%norad72 Sched'.5e Approved for public release: distribution is unlimited.
..t P rfcro;o z Or a: zat;crn Report Nu:'erS 5 \ or O 0 r .1ra ,': *o P r..r' N, ,

6a Name of Performing Organtzatuon , b Office Symbol 7a Name of \lonoorin.o Or-an::zt:on
Naval Postaraduate School (f applicabe) 52 Naval Postiaduate School
6c Address (citt. state. ind ZIP code) 7b Address i ciry. sirate. and ZIP rode,
Monterey. CA 93943-50 0) Monterey, CA 93943-5) 0O
8a Name of Funding Sponsoring Organization Sb Off'ce Sxmbol 9 Procurement Instrument lden;:XaI;on Vomocr

,if" a :pI!l', aI

Sc Address i J"i. s'ate. and ZIP code) 10 Source ofud \:m,,r

P-e'2ran F'es~n t \(\ PI ",) I lrk , \ 7 : \. - "

11 Title ,inciude A..r'. 'a :5Un, A PFRFORMANCE S FLDY OF 1I HE (_ONCLFRRLNCY CON I RUL ALGOR II INIS
IN IER.RCIIlCAI. NETWORK WITH P.AR[I lION[LD DATABI.\SE

12 Persoral .\ut ,rts, Shin. Ion Seok
13a T pe of Report 3b I me Coered 14 Da e ot Reer . var, .':t', lae C)int

Master's Thesis From ro March 1000 4,)

16 Supp!ementarv \oatort [he views expressed in thi. thesis are those of the author and do not retle:ct the official policy or po-
sition of the Department of Defense or the V.S. Government.
17 Cosati C, ,.2 IS Sutject Terms (coiizue -,n r ve'rse il to,, es r zrt ,: m.l ,

Field Group Subgroup Concurrency Control, I lierarchical Computer Network

19 Abstract r continue cn reverse if accesTr.r, and Jd'ntWrV Sc1 block nunier)
It is common to have a hierarchical communication network in a military environment. If we consider each node in the

network as a computer site then we have a hierarchical computer network. In a hierarchical computer network, because the
need of resource sharing we now have a distributed processing system. In this system a parent node may have duplicate re-
cords of all its children. Any update of record in a data file has to be reflected in other nodes that keep the duplicates. We
need a concurrency control mechanisms to gaurantee the integrity of the distributed database and the serializabilit .of con-
current updates.

This thesis is the first to investigate the performance in hierarchical networks of two ,%idelv cited concurrency control
mechanisms: lockin2 based and timestamped. Various parameters are investigated in this research: number of nodes. level of
network, transaction arrival rates, and message transmission speeds, etc. We present the problem, explain the algorithms used
in our simulation, analyze the results, and discuss the findings.

20 Distribution Awalaility of Abstract 21 Abstract Securit, Classification
N] unclaqsified unlinted - same as report D DTIC users Unclassified

22a Name of Responsible Indi%:dual 21T lelephone ,in, :Idc Area ,oae) 2"c O!:ice S)rnbol
Chyan Yan2 (40S) 646-2266

DD FORM 1473.54 MAR 83 APR edition may be used until exhausted securi'y ciassifii.ation of this page
All other editions are obsolete

I nclassitied

Approved for public release; distribution is unlimited.

A Performance Study of the Concurrency Control Algorithms
in llierarc"'ical Network with Partitioned Database

by

Shin, Eon Seok
Captain, Korean Army

B.S., Korea Military Academy, 1983

Submitted in partial fulfillment of' the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March 1990

Auth or:

Shin, Eon Seok

Approved by:

Chyan Yang, FhesisvAdvisor

Myung W. Suh, Second Reader

John P. Powers, Chairman,

Department of Electrical and Computer Engineering

ABSTRACT

It is common to have a hierarchical conmmunication network in a militarv environ-

ment. If we consider each node in the network as a comput(r site then we have a hi-

erarchical computer network. In a hierarchical computer network, because the need of

resource sharing, we now have a distributed processing system. In this system a parent

node may have duplicate records of all its children. Any update of' a record has to be

reflected in other nodes that keep the duplicates. We need a concurrency control

mechanism to guarantee the integrity of the distributed database and the serializabilitv

of concurrent updates.

This rpe is the first to investigate the performance in hierarchical networks of two

widelh-cited conurrencv control mechanisms. lockine based and timestamp. Various

parameters are investigated in our research: number of nodes, level of' network, trans-

action arrival rates, and message transmission speeds, etc. We present the problem, ex-

plain the algorithms used in our simulation, analyze the results, and discuss the finding.us. (,
-, For7 T

), i: ed El
-" -i tion

7'"'tribution/

.Va13ilallty Codes

A:ail and/or
Specialk/ __

iii

TABLE OF CONTENTS

1. INTRODUCTION...1I

A. BACKGROUND...I

B. DISTRIBUTED DATABASE..................................2

C. CONSISTE'NCY CONST'RA-fITS...............................1

D. GENERAL DEFINITIONS....................................3

1 -. GENERAL ASSUMP~TIONS...................................4

If. CO'NCURRE\NYCO'NTRIOL ALGORITHMl-\S.......................5

A. LOCK ING-BASED CONCURRENCY CONTROL 5

B. CENTRALIZED LOCKING ALGORITIIhM, (CIA)..................

C. CONCURREN-CY CONTROL ALGORITHMS BASE D ONT IM E-STAMP S

D. DISTRIBUTED VOT ING ALGORIT11MN (DV.\).................... S

111. SIMIULATIONNMODEL .. 9(

A\. THlE PERFORMANCE MEASURE............................. 11

B. PARTITIONED DATABASE MODEL..........................10 (

1. DESCRIPTION PARAMIETERS............................ 10

2. DIRECTORY MANAGEMENT............................I I

C. PARTITIONED IIIERLARCHICAL DATABASE MODEL............ 12

IV. ANALYSIS OF SIMULATION RESULTS.......................... 15

V. CONCLUSION...23

iv

APPENDIX A. SIIULATION PROGI.Ml LIST FOR CLA 24

APPENDIX B. SIMULATION PROGRAM LIST FOR DVA 29

LIST OF REFERENCES .. 38

INITIAL DISTRIBUTION LIST39

ACKNOWLEG EMENTS

I wish to express my sincere appreciation to my thesis advisor, Professor Chvan

Yang. He was a consistent wellspring of sound advice, technical competence. profes-

sional assistance, and moral support. Without his assistance, this thesis could not have

been undertaken.

I am also thankful to Professor Myung NV. Suh who gave me many ideas and en-

couraeed me to finish this thesis.

I would lile to thank to my friend Ryoo, Moo Bong who taught me the GIL with

excellent knowledge and warm heart.

I would also like to thank to my wile. Mi Kyeong, and my dauther. I aenuli, for

their support and patietnce away from home during the life in the United States.

Now it is time to go home and I'd like to thank ny family, far away in Korea who

have staved in my heart all the way through.

vi

LIST OF FIGURES

Figure 1. \Vell-formed T-ransaction..................................... 6

Figure 2. Tw-o-Phiase Lockine Action... 7

Figure 3. Simple Partitioned Database Model............................ 12

Figure 4. Partitioned H ierarchical Database Model........................ 14

Fig2u re 5. Effect of Interarrival 'ime onl Response T'ime.....................15

F 7igure 6. Effect of Transm-iission Ti'me on Response Time...................1I

Figu r e 7. EF11ect of Number of Nodes onl Response TIlime.................... 16

Figure S. LEffe ct of Level of'Network onl Response 'Iime.................... 17

Fi-Lire 9. Eff'ect of Interarrival TIime onl Response l1ime [or Case I.............IS

Figure 10. Effect of Interarrival 'Ime onl Response Time for Case II............1S

Fig-ure 11. E-ff'ect of Interrival Thie on Response TIime for Case III.............19

Fig~ure 12. Effect of Numnber of Nodes on Averaze TIraflic20

FigZure 13. E ffect of' Level of' Network on Avera-e Tfratlic. 20

I. INTRODUCTION

A. BACKGROUND

In the course of the development of computer and communication technology se-

veral important technical achievements have been introduced. One of the most signif-

icant techniques among these is distributed data processing. A distributed system

consists of' a set of' computers located in dift-erent sites connected by a counMIlnication

network. Programs are running on each of' these comLputers and the programs access

local or remote resources, such as a database.

The major advantage of' a distributed system is to provide low-cost avaiklibilitv of

resources of the system by localizing accesses and providing insulation against failures

o" individual components. Since many users c.in be concurrently accessing the ss,;temi.

it is essential that a distributed system should provide a high degree of concurrency.

Due to the requirement of' data sharing, the distributed system may be designed with

more than one copy of the same data in different locations. This partitioned and repli-

cated distributed database requires synchronization to control the concurrent multiple

updates and maintain its consistency. This synchronization is called the concurrency

control algorithm.

There are two types of concurrency control approaches, local concurrent control

and global concurrency control. The local concurrent control mechanism is developed

to guarantee that a step of a transaction is executed as a single atonic operation at an

individual node. The global concurrency control mechanism which is also called tile

update algorithm, controls the transactions between two different nodes [Ref. 1. Many

algorithms have been proposed in this field [Ref. I1 [Ref. 2] [Ref. 3]. These algorithms

are usually complex and hard to understand. I lowever most of the work oil concurrency

control has concentrated on the development of new algorithms, and not as much at-

tention has been given to the performance evaluation of the algorithms. Also, most

performance studies are done in general network structure [Ref. I [Ref. 2] [Ref. 41. For

military settings, the line of authority is hierarchical, therefore military systems call for

hierarchical computer networks in a distributed system environment. System managers

or designers usually like to investigate performance differences and sometimes like to

dynamically adapt the system to the transaction pattern. Therefore, it is important to

analyze performance differences between different concurrency control algorithms for

hierarchical networks. This research is to report the performance analysis of such net-

works.

B. DISTRIBUTED DATABASE

A distributed database systern is hosted by collection of geographically separated

computers called sites. Each sites has a unique identifier, and the sites are interconnected

by a communications network. Sites communicate with each other by means of messages

sent over the network. Niessages may be arbitrarily delayed in the network, but it is as-

sumed that all messages are eventually delivered.

The database consists of an unique set of entities, such as records or files, that are

uniquely named and that serve as indivisible units of access. An entity is realized as one

or more data objects, each of which is uniquely identified by an [entity-name. site-

identifier] pair.

Replication of an entity occurs if it is represented by more than one object. Repli-

cation can result in improved performance if the cost of storing and maintaining (up-

dating) copies is less than the cost of access. Also replication can improve availability in

the sense that, if one site becomes inaccessible, then users may be able to access the data

at other site. In our model it is assumed that each entity is partially replicated which

means the entities are not replicated at all nodes but replicated at some nodes.

21

C. CONSISTENCY CONSTRAINTS

We would like to keep a database consistent. I lowever, due to updating activity, the

consistency constraints must be temporally violated. Two levels of consistency can be

defined for multiple copies of data. Strong consistency is dined as the condition of

having all copies of the data updated at the same time. Strong consisency is very desir-

able becuse all copies of data have the same update status at any time. but this always

entails a considerable delay in response time to process the update for all copies. This

is because the update of all copies must be delayed to the time of the last update of

system. Weak consistency is defined as the condition of' having the \arious copies of'

data converge to the same update status over time, but at any instant of time some

copies may lag others in the number of updates processed. Delays in general will be re-

duced and more elicient use of resources is possible. In a weak consistency system some

copies of data will be more up-to-date than others [Ref. 5]. Most algorithms are devel-

oped under weak consistency constraints because of ellciency, and our simulation also

follow weak consistency constraints.

D. GENERAL DEFINITIONS

We now give four important definitions that we need in the following discussions.

1. Hierarchical distributed data base system: A system with the database dispersed
throughout a number of nodes, where each node can corunnicate in real time with
one or more subordinate nodes, but with only one superior node and with sufficient
processing power at each node to manipulate the database.

2. Concurrency control: The mechanism of maintaining logical data consistency in
an environment of conte,.don among multiple update sources.

3. Node: Complete computer system at a single location.

4. Transaction: Set of actions which transform a database from one consistent state
into another consistent state [Ref. 51.

3

E. GENERAL ASSUMPTIONS

For our study we make the Following assumptions:

I. The data bases are partially replicated in the system, which is more practical than
completely replicated databases.

2. Although update transactions may add or delete database items, we consider the
total number of data in database to be constant, that is, a static database.

3. All nodes have local concurrency control. We are not concerned with local con-
currency control mechanism, but concentrate on the global concurrency control
algorithms.

4. There is a communication system which allows any node to communicate with any
other node.

5. No ('ailures occur in the system, that is, the communication system never faiils to
de1lver a message.

6. All transactions which are used for this study are update transactions.
7. -here is no multiprocessing at each node. The transactions which arrive at certain

nodes are served serially. Since most transactions are small, the schedule t!uorithmi
in each node should not have a noticeable eliect on the response time and results
obtained with the model.

4

!1. CONCURRENCY CONTROL ALGORITHMS

Concurrency control is the activity of coordinating concurrent accesses to a data-

base in a multi-user database management system. Concurrency control permits users

to access a database in a n-,ultiprogranimed f'ashion while preserving the illusion that

each user is executing alone oi, a dedicated system. The main technical dillIcultv in

achieving this goal is deconfliction. Database update performed by one user must not

interf'cre with database retrievals and updates periormed by another. Althouuh many

algorithms have been proposed, most of' them are a variation of two basic techniques,

Iwo-Phase Lockinz and Time-Stamp Ordering. Alternatively we can interpret these two

technique as centralized and distributed algorithms. The best concurrency control al-

eorithm For a particular application depends on the system paraneters. We will discuss

these paraii.ters in Chapter 3.

A. LOCKING-BASED CONCURRENCY CONTROL

Objects accessed by a transaction are locked in order to ensure their inaccessibility

to other transactions while the database is temporarily in an inconsistent state. There

are three lock-releated actions on objects:

1. (T. LockX. < A >) denotes a request by transaction I for an exclusive lock on the
object < A > . The request is granted only when no other transaction is holding a
lock of any type on object.

2. (F. Lock_S, <A>) denotes a request bv transaction - for a shared lock on the
object < A > . lhe request is granted oniv when no transation is holding an ex-
clusive lock on the object.

3. (T. Unlock <A>) denotes the release of any lock by transaction T on the object
< A\ > .

A transaction is said to be well-formed if it reads an object only while it is holding

a shared or exclusive lock on the object And if writes an object only while it is holding

an exclusive lock on the object. Figure I illustrates well-lormed transaction.

5

(17[. LockS. A)

(TI. Read object. A)

(1I7, Unlock, A)

(TI. LockS. B)

(T1. Read-object. B)

J I, Unlock, B)

(TI. LockX. A)

TI. \\rite object, A)

11. Unlock. .A)

1, .Eockx. B

TI. \Vrite-object. B)

T1. Unlock, B1)

Figure I. Well-formed Transaction

.\ transaction is Two-Phase if it does not issue a lock action after it has issued an

unlock action. The first phase of the transaction, called the growing phase. begins with

the first action and continues up to the first unlock action. The scond phase of the

transaction, called the shrinking phase. begins with the first unlock action and continues

through the last action. A transaction is strong two-phase if all unlock actions are issued

at the very end of the transaction. Figure 2 illustrates a typical Two-Phase locking

action. The transaction TI locks the data item A, and, after finishing all steps of the

update, it unlocks the item A. TI does not need additional lock action for item A.

We apply the Two-Phase Locking Algorithm to the centralized strategy which is known

Centralized l.ocking Algorithm (CLA).

6

(II. LockX, <A>

(I1. LockX. < B >

(TI, Read_object. <,\ >

(T1. Write-object, < A-

(TI. Read_object, < B>)

(IA, Writeobject, < B"

(TI, Unlock. <A:\>

([1. Unlock. < B>)

Figure 2. T'so-Phase Locking Action

B. CENTRALIZED LOCKING ALGORITHM (CLA)

[or the centralized locking algorithm, the lock manager is ccntralzed at a single

node, i.e., the central or root node. It manages the locks of all data elements of the dis-

tributed database. We will explain the steps of CL.\.

1. An update transaction T arrives at node X.

2. Node X requests locks from the central node for all items referenced by transaction
T.

3. The central node checks all the request locks. If all can be granted. then a granted
miesage is sent back to the node X. If some items are already locked, then the re-
quest is queued.

4. When node X gets a "Grant" message for transaction T. the items requested by
transaction T are read from the local database and updated values are computed.

5. A "Perform update T" message is sent to all other nodes, informing them of the
update. Node X updates the values and stored in its local database.

6. When another node receives its "Perform update T"message. it performs the up-
date.

7. When the central node receives its "Perform update T'" message, it releases the locks
of' the involved items and then performs the update on the local database. Trans-
actions that were waiting on the released locks are notified, and can continue their
locking process at their central node.
(End of CLA algorithm)

7

C. CONCURRENCY CONTROL ALGORITHMS BASED ON TIME-STAMP

Time-stanp ordering (T 0) is a technique whereby a serialization order is selected

a priori and transaction execution is forced to obey this order. Each transaction is as-

signed a unique time-stamp by the time-stamp inanager (TM). There also is a time-

stamp associated with each database item indicating the time when this item was

updated. Time-stamp protocol is distributed in nature since all nodes which share the

data item must participate in the decision making. So here we see the distributed voting

algorithm using time-stamp which we simulated.

D. DISTRIBUTED VOTING ALGORITHM (DVA)

1. When transaction T arrives at a node X. it immediately reads the items and time-
stamp of desired from tile local database. We use Ts(T,Di),,, . to denote this.

2. Transaction T visits the next node (i.e.. node Y) and compare the time-stamp for
the transaction base set items with the corresponding time-stamps in the local da-
tahase. If' any base set item is obsolete (i.e., Ts(F.DiY).. --- ISDi)-,,) then vote
* Reject" and send the "Reject" message to originatine node. The transaction will
be restarted. If each base iem is current (i.e., 1>S(T,Di),,, > Ts.Di),.o) then vote
"Ok".

3. After voting all the nodes which have the base item. if the transaction T got "Ok"
at all nodes, then the time-stamp is assigned to the transaction (i.e., T-O)) and the
"Accept" message with 1s(>T) is sent to all nodes.

4. If a node receives an "Accept" message and if -s(1)> Ts(.Di,,......, then the new
values are stored in the local database and time-stamps of the base set item, are
changed. Otherwise. no modification is performed, since the values are obsolete.
teind of'DVA)

111. SIIULATION MODEL

We built a simulator using SINISCRIPT 11.5 to examine the algorithms for our

study. Fach simulator has an update transaction generator that produce* transactions.

The items referenced by each transaction are selected randonly. The rimulator then

minics the operation of the hierarchical system as it produ.cs the transactions. Of

course, the simulator does not read or write the data corresponding to a transa.ction: it

only miics this by requesting the necessary 1 0 And (TP. time from the servers. I low-

ever. the simulator keeps track of such activities as granting lo,.k, time-stalpm: the

item values, and differed transactions. Dluring the simulation, ,tatistics suchI as aerace

response time of transactions and the number of messages are collected.

Several model paranieters are used:

I. .Mean interarrival time of update at each node Itn. We assume that interarrival
time is Poisson distributed.

2. Mean base set site (Bs). We assume that the number of items referenced by an
update transaction has discrete exponential distribution.

3. Number of items (.1). This parameter describes the total number of data items In
the system.

4. The number of nodes (N).

5. The network transmission time (T). In order to simplify the simulation. we assume
that the time it take any message to go from any node to any other node is a con-
stant T.

6. CPU time slice (Cs). The CPU time slice is the time it takes any CPU server to do
a small computation, i.e.. set lock.

7. CPU update compute time (Cu). Cu is the compute time required for updating one
data item. In other words, the total time for one transaction is Cu multiplied by
Bs.

8. 1 0 time slice (Id). This is the time it takes to read or write a data item from the
database and locks or time-stamps.

The following parameter values are conmmon to most of the previous performance

evaluation studies [Ref. 4) [Ref. 61. It = I - 20 seconds. Bs = 2 - 10. N = 2 - 15 nodes.

9

T = 0.1 seconds NI = 100 - 2 0. Cs = 0.0W1)") seconds. Cu = 0.()() seconds, and Id

= 0.025 seconds.

A. THE PERFORMANCE MEASURE

There are many variables one can choose to evaluate the performance of

the system. In this study we will consider two most important variables:

1. UPDATE RESPONSE TIME. The response time of update is defined as the dif-
ference between the finish time and the time when the update arrived at the orig-
nating node. The average response time of update transactions will be investigated.

2. NIMBEIR OF \IESS:\G:S. Another important performance variable is the
number of messages that must he sent per update transaction. The local messagces
are considered internal to a node and are not counted here.

B. PARTITIONED DATABASE MODEL

In this section we explain the partitioned database model in a general computer

network, modeling of the partitioned hierarchical database will be described in next sec-

tion.

In a partitioned distributed database, which means a partially replicated database.

items are not replicated at all nodes. As matter of fact, some items might not be dupli-

cated at all. There might exist only a single copy of some items. From the point of view

of a single node, it has a fraction or partition of the database. Tihis partition can be

identical to, completely disjointed from, or can overlap the partitions at other nodes.

In order to model the partitioned database, we choose the ;imple model (a this time

it is not a hierarchical model) in which the data is replicated. As we mentioned before.

the database is the fixed set of M shared named resources called items. Each item has a

name and some value associated with it. For simplicity, we use the integer between I and

M (i.e., I < i < 'VI.

i. DESCRIPTION PARAMETERS

Now we make some description parameters in order to describe the model. The

set S(i) is the set of nodes which have a copy of the value of item i. The elements of S(il

10

are the node identification numbers which have a copy of value of item i. We assume

all sets S(i) are not empty. Another parameter is a f'ragment, which is dcfined as the 'et

of items that have a same set S(i). We use the notation S(1F) [or the set of noder where

the F is stored. that is S(F) equals S(i for all items i in F. Ihese parameters are used

for sinmlation. l-igure 3 illustrates the very simple model and model description pa-

rameters for current control.

I.et Trl he the transaction which arrives at node B and has the base set

Bsl = 1. 2. 3). then

S(l) = [A, 13. C. 1)

S12 A. B. C I
S1= [A. B. C, 1)

For TrI F = [1. 3 [and S(F) = [A, B. C, D].

Let Tr2 be the transaction which arrive at node 1). and has the base set

Bc2 = [3.5 1, then

St3) = [A, B.C. 1)

S(5 = [A, C,.) E

For Tr2. F is null and S(F) is not defined.

2. DIRECTORY MANAGEMENT

Now we discuss the directory management. Suppose that a transaction arrivc,

at a certain node with its base set. [low does the transaction know what nodes have a

copy of data item i? In the case of Trl, which we used in the previous example. how does

TrI or node B generate the set S(i)?

There are basically two kinds of solutions. the first method is that a complete

directory of the whole database is replicated in each node. The other method is that the

transaction broadcasts the message " Where is the item i located ? " to all nodes and

waits for the response from other nodes which have the data item i [Ref'l 1. A directory

is a mapping that produces the set S(i) or S(F), given the item name i or fragment F.

11

DA={1, 2, 3, 4, 5}

DB={jI, 2} DD= 11, 3, 51

BSi=11, 2, 3) BS2={3, 51

B D -

Dj: The data items
at node i De={(1, 2,... 6}

BS: Baseset

Figure 3. Simple Partitioned Database INodel.

By consulting the directory, a transaction T will be able to find out the set S(i) corre-

sponding to every item in Bs. In next chapter we take care of this problem in detail.

C. PARTITIONED HIERARCHICAL DATABASE MODEL

In the previous section we described the general model of a partitioned database.

Now we will make a hierarchical model of the partitioned database. When we describe

the hierarchical computer network, the level will be important factor. The level is the

depth of the network from the root node, which is the central node of the network to the

bottom nodes.

One of the characteristics of hierarchical distributed system is that each node has the

authority to control a subordinate node. We make one definition here. The logical

12

control channel is the chain of control which can give authority !or updating. This deli-

nition is very important because although there may be a physical connection 'ctween

children nodes. it is not logical control channel.

Additional assumptions are adopted for the hierarchical model. Let)I be tiie total

set of data items in the database at node "1" and suppose node "' has two ,ubordinate

nodes '2" and "3 ' , and their total set of data items in their database are D2 and D3 then

D I =)2 + D3 + data items of' node l's own.

We can generalize this. l'node I has n children nodes, then

1 VD 1 I's own data items

Wchere 1); are children node of D1

So the root node which is the central node in hierarchical model has Il the data

items in the network. Another important assumption we use is that the transaction Jr

can only request the update data items in its original node. If items which are relerenced

by a certain transaction are not located at that node, then the transaction i,1 a wrnn,..,

transaction. This is quite reasonable in a hierarchical distributed database model,

Tii dircctorx of' our model is somewhat like our databasc, so each node has its own

directory and the root node has a whole directorv of the svstem. t1ieure 4 illustrates the

very simple model of a partitioned hierarchical database model. Let Fri arrive at node

C with baseset BsI = [1,21. then

S[ll = [A, B, C

S[21 = [A. B. C

and F [1, 2 1, so S[FJ = [A, B, C 1

Let Tr2 arrive at node B with baseset Bs2 = 1 1, 5, 8 1, then

siJ = I A, B, C

• S[[= [.\ B, D

13

s[81 A, [,BI

* and F is empty, therefore S[F] is not defined.

DA={1, 2, ..., 10}

A

O=j1, 2, ..., 8) DE=9, 10o

BS2={1, 5, 8} B E
Do={4, 5, 6}

Dc{1 2, 3)
BSi{1, 2} CD Di: The data items

at node i

BS: Baseset

Figure 4. Partitioned Hierarchical Database Model

14

IV. ANALYSIS OF SIMULATION RESULTS

CLA
S-: DVA

E

0

iterarrNiva rwne se

Figure 5. Effect of Interarrival Time on Response Time

We have tried numerous systemn settings and studied the sensitivity of-each param-

eter separately. Important system parameters are the response time, the number of' nodes

in the network, the number of levels in the network, the interarrival rate of transactions,

and the averap-e system-wide traffic. All curves in this chapter are plotted by connecting

discrete data points firom simulation results.

Figure 5 shows the effect of the mean interarrival time on the mean response time.

We notice that, the longer the interamrval time (low arrival rate), the shorter response

time in both algorithms, but CLA outperforms the DVA.

15

a CLA
DVA

0

0.05 0.10 0.15 0.20 0,25

Tranzimiss~on Time 9oc

Figure 6. Effect of Transmission Time on Response Time

CLA

E

C
0

0 5 10 15 20
Number *I Nods

Figure 7. Effect of Number of Nodes on Response Time

16

U/

Ck

C

:CLA
V: vA

o I I I I I I

0 s10 1 20
Level ol Network

Figure 8. Effect of Level of Network on Response Time

This is because in CLA only the root node perform decision making. However depend-

ing on the level of the network, the results vary.(See Figure 7, Figure 9, Figure 10, and

Figure 11).

The effect of transmission time on the response time of transaction is shown in

Figure 6. Both algorithms exhibit the same behavior. The CLA appears more sensitive

to the transmission time than the DVA. This is because the number of traffic in CLA is

much higher than that of DVA (See Figures 12, and 13). Also the CLA begins to suffer

a transmission delay when T reachs 0.16 sec. When transmission time is low, DVA is

penalized by the coordination time among participants, while CLA is penalized for the

time required to send the grant signal to the requesting node when the transmission time

is above a certain threshold (0.16 in Figure 6).

17

: CLA

--- :DVA

'2

U

0

12 16 20
inter Arrivoltime

Figure 9. Effect of Interarrival Time on Rcponse Time for Case I

0
:CLA

" DVA

E

C-
0
CL

12 16 20
Inter Arrivaltime

Figure 10. Effect of Interarrival Time on Response Time for Case 1i

18

CLA
: DVA

0

0

I I I

2 6 20 24

Inter Ar'nilt r

Figure Il. Effect of Interrival Time P,- RL ponse Time for Case III

[igure 7 shows the effect of the number of r -des on response time. For both al-

gorithms, increasing the number of nodes in the network increases the response time in

an O(n) manner, which means the performance of system is degrading. The increase in

response time is due to the fact that, as the number of sites increases, the overall rate

of arrival of transactions into the system also increases, causing additional delays on the

processing of transactions. The DVA is less sensitive to the number of nodes in the

network than the CLA. Because in the CLA. when number of nodes gets larger a heavier

1 0 loau ' present, at the central node, but in the DVA the 1 0 load is distributed

among the sites.

19

CLA
-DVA

oS10 .S 20

Nurn of Mods

Figure 12. Effect of Number of Nodes on Average Traffic

.- DVA

0 S 10 15 20

Level o1 Network

Figure 13. Effect of Level of Netiiork on Average Traffic

20

The efllect of' the level of' the network on the response time is depicted In Figurc S.

This result shows that the level of hierarchical network, given the same number of nodes,

has a direct impact on the response time. The impact is not entircly linear. It indicates

a tendency that the performance will be degraded exponentially. Ihis ,raph is somewhat

complicated, so we consider 3 cases depending on the level of network, and investigate

the response time versus interarrival time for each case. The results of these are shown

I _iure 9. Fiure 10. and Figure 11. Figure 9 shows the Cef'ect of interarrival time on re-

sponse time when L is small (i.e., L < 3). The CL,\ perlorms better than the I)V\ In

this case. I his is quite reasonable because, when L is small, the tralifc of the svtem is

not as important a factor From a performance point of view. Thus, the LA takes less

time to perform the transiction than the DVA. DVA needs extra 1 0 time for time-

stamp for S[F]. Figure 1) shows case II (i.e., 3 < L < 15). In this case, the l)V.\ per-

forms better than the CLA, because if L gets larger. the traflic for system becomes more

important and, for conflict transaction, the transaction has to get to the central node in

order to have locks in CLA. I lowever, for DVA the transaction will be rejected before

getting to the central node. This behavior saves much of the DV..'s response time.

Figiure II ,hows an extreme case (i.e.., > 15). In this case the two algzorithms are al-

most identical in performance.

Figure 12 shows the average traffc versus the number of' nodes in the network. For

a iven level of the network, the average traflic of the system is increased sharply when

number of nodes get to 10. and it will be saturated after the number of' nodes exceeds

10.

Figure 13 shows the average trafflc of the network versus the level of the network.

I lere we observe that the increasing tralic is somewhat linear, hut, %%hLn I gets larger.

21

the rate of increase is decreased. vCn though ligure 12 and Figure 13 are similar. we

can say that the more critical lactor for traffic of network is the level of the network.

V. CONCLUSION

We have presented a performance comparison o' concurrency control algorithms.

Based on the results obtained, we reached the following major co ICILusions:

The network structure is the most important factor for the performance of concur-

rencv control algorithms. FLspecially, in a hierarchical computer network the level of

network is the most critical factor to determine the performance of concurrency control

a-:orithms.

Althougzh we discuss each parameter individuallyv, a network deigner should note

that all of them are related and should consider their combined cfk'cots on the network

performance. -lhe tradeoffs among different parameters may be affected by other oper-

ational policy that cxists in the system. To have ea.l node exhibiting various transaction

rates and interarrival rates is one of the areas that needs future ixmestization when a

network designer wants to customize or condition the network to his need.

This Studv was the first trial considering the hierarchical structure of' a network in

performance analysis of' the concurrency control area. During simulation of various hi-

erarc:ical computer networks we find that it is hard to describe the network structure

precisely. [or example. even though a network has the same number of levels and same

number of nodes, there are still many possible system configturations. There is a need

for a better network representation in terms of data structure and computation algo-

rithms.

In order to maximize the performance of the network the choice of concurrency

control algorithms is very important. Since the network structure may be chanced dy-

namicallv so we may need to develop dynamic concurrency algorithms which can per-

form best under various system structures.

23

APPENDIX A. SIM1ULATION PROGRAM LIST FOR CLA

This o:ogram is written for simulation of CLA

PREAMBLE

NORMALLY, MODE IS INTEGER

DEFINE RESPONSE. TIME TO MEAN ATRBI
DEFINE AVERAGE. BASESET TO MEAN ATRB2
DEFINE COM1M.TRAFFIC TO MEAN ATRB3

EVENT NOTICES INCLUDE TRANSACTION. GEN, ARRIVAL. AT. CENTRAL,
AELEASE. LOCK, UPDATE

EVERY ARRIVAL. AT. CENTRAL HAS A RECEIVE. TRANSACTION
EVERY RELEASE. LOCK HAS A DONE. TRANSACTION
EVERY UPDATE HAS A UPDATE. TRANSACTION

TEMPORARY ENTITIES
EVERY TRANSACTION HAS A GEN.TIME, A TRANSACTION. SEQ, A MESSAGE. TYPE,

A NODE. NUM, A NODE. LEVEL, A NUM. OF. BASESET, A BASE. ITEM
EVERY TRANSACTION MAY BELONG TO THE QUEUE1,

AND MAY BELONG TO THE WAIT. QUEUE

THE SYSTEM OWNS THE QUEUE1, THE WAIT. QUEUE
DEFINE QUEUE1 AS A FIFO SET
DEFINE WAIT. QUEUE AS A FIFO SET
DEFINE INITIATE AS A ROUTINE
DEFINE CHECK. LOCK AS A ROUTINE
DEFINE REPORT. GENERATOR AS A ROUTINE
DEFINE TEST AS A ROUTINE
DEFINE LOCK. LIST AS AN INTEGER, 1-DIMENSIONAL ARRAY
DEFINE BASE. TABLE AS AN INTEGER, 2-DIMENSIONAL ARRAY

DEFINE GEN.TIME, RESPONSE.TIME, AVERAGE.BASESET, T, Cu, Id, Cs,
COMM.TRAFFIC, RATE AS A REAL VARIABLES

DEFINE TRANSACTION. NUM, TRANSACTION. SEQ, MESSAGE. TYPE, NODE.NUM,
NODE. LEVEL, NUM. OF. BASESET, QUE. INDEX, LASTNODE,
MINBASE, MAXBASE, LOCK. STATUS, Dn, LIMITofTRANS, MAXLEVEL,
BASE. ITEM, COUNT, SYSTEM. STATUS AS A INTEGER VARIABLES

TALLY AVE. RESPONSE AS THE AVERAGE OF RESPONSE. TIME
TALLY AVE. TRAFFIC AS THE AVERAGE OF COMM. TRAFFIC

END

24

M!AIN

RESERVE BASE. TABLE(*,*) AS 2000 BY 5

RESERVE LOCK. LIST AS 2000
READ SYSRATE
RATE = SYSRATE/20
SCHEDULE A TRANSACTION. GEN NOW

LET T = 0.03 MESSAGE TRANSMISSION TIME
LET Cu = 0.001 CPU TIME SLICE TO COIPUTE ACTUAL VALUE OF TRANS
LET Cs = 0.00001 CPU TIMESLICE FOR SMALL COMPUTATION
LET id = 0.025 IO TIME SLICE TO READ OR WRITE FROM DATABASE
LET LASTNODE = 20 LAST MODE NUMBER
LET MINBASE = M ' INIMUM NUMBER OF BASESET
LET MAXBASE =5 MAXIMUM NUMBEROF BASESET
LET QUE. INDEX = 0 QUEINDEX
LET LOcK. STATUS = 0 IF LOCKED ALREADY THEN 1 ELSE 0
LET En = 1000 * LASTNODE '' TOTAL DATA ITEM IN THE DATABASE
LET LIMITafTRANS =1000 THE NUMBER OF TRANSACTION SIMMULATED
LET A:K\LEVEL = 3 '' LEVEL OF NETWORK
LET CQUNT = 0 it NUMBER OF TRANSACTION
LET TRANSACTION.NUM = 0
LET SYSTEM. STATUS = 0
START SIMULATION
END

EVENt1 IRANSACTION. GEN

CREATE A TRANSACTION
ADD I TO TRANSACTION.NUM
IF TRANSACTION. NUM IS GE LIMITofTRANS

CALL REPORT. GENERATOR
ALWAYS
LET GEN. TINE = TIME. V
LET MESSAGE. TYPE = 1
CALL INITIATE
IF NODE. NUM = 1

IF SYSTEM. STATUS = 0
CALL CHECK. LOCK

ELSE
FILE TRANSACTION IN THE WAIT. QUEUE

REGARDLESS
ELSE

SCHEDULE AN ARRIVAL. AT. CENTRAL GIVEN TRANSACTION
IN (T * (NODE. LEVEL - 1)) MINUTES

REGARDLESS
SCHEDULE A TRANSACTION. GEN IN (EXPONENTIAL. F(RATE,I)) MINUTES
RETURN
END

25

ROUTINE INITIATE

ADD 1 TO TRANSACTION. SEQ
NODE. NUM = TRUNC.F(UNIFORM. F(1,LAS7NODE,1))
IF NODE. NUM = 1 NODE. LEVEL = 1
ELSE

IF NODE. NUM = 2 OR NODE. NUM = 3 NODE. LEVEL =2

ELSE
NODE. LEVEL =3

REGARDLESS
REGARDLESS
NUM. OF. BASESET = TRUNG. F(UNIFORI. F(MINBASE,MIAXBASE, 1))
LET J = TRANSACTION. SEQ

FOR I = 1 TO NUM. OF. BASESET
DO
IF NODE. NUM =1 BASE.TABLE(J,I) = TRUNC.F(UNIFORMI.F(1,"'00O,1))
ALWAYS
IF NODE.NUM = 2I BASE.TABLE(J,I) = TRUNC.F(UNIFORM.F(1,900,1))

ALWAYS
IF NODE. NUM~ = 3 BASE.TABLE(J,I) = TRUNC.F(UNIFORMI.F(901,190,1))
ALWAYS
IF NI E.NUM > 3 AND NODE.NUM < 12

BASE.TABLE(J,I) = TRUNC.F(UNIFORM.F(1,8OO,1))

ALWAYS

IF NODE. NUM > 11 PASE.TABLE(J,I) = TRUNC.F(UNIFORM.F(9O1,18OO,1))
ALWAYS
LOOP

END

EVENT ARRIVAL. AT. CENTRAL GIVEN RECEIVE. TRANSACT ION

IF M',ESSAGE.TYPE(RECEIVE.TRANSACTION) = 1
IF SYSTEM. STATUS = 0

SYSTEM. STATUS = 1
CALL CHECK. LOCK

ELSE
FILE RECEIVE.-TRANSACTION IN THE WAIT. QUEUE

REGARDLESS
ELSE SCHEDULE A RELEASE. LOCK GIVEN RECEIVE.TRANSACTION

IN (T * (NODE. LEVEL(RECEIVE. TRANSACTION)-l)) MINUTES
REGARDLESS
RETURN
END

26

ROUTINE CHECK. LOCK
I..If

LET LOCK. STATU:S =0

FOR I = 1 TO NUM. CF. BASESET

DIF LOCK. LIST(BASE.TABLE(TRANSACTION. SE-Q,I)) = 1
L'CCK. STATUS = 1

ALWAYS
LOOP
IF LOCK. STATUS = I FILE TRANSACTION IN THE QUEUEI

QUE. INDEX = QUE. INDEX + 1
ELSE
FOR I = 1 TO NUM. OF. BASESET
DO

LOCK-TJST (BASE.TABLE(TRANSACTION.SEQ,I)) =1

LOOP
SC, !EDULE AN UPDATE GIVEN TRANSACTION
IN (T (NODE. LEVEL - 1)) MINUTES

REGARDLESS

END

EVENT UPDATE GIVEN UPDATE. TRANSA"CTION

M-ESSAGE. TYPE(UPDATE. TRANSACTION) =2
SCHEDULE AN ARRIVAL. AT. CENTRAL GIVEN UPDATE.TRANSACTION IN

(NUM.CF. BASESET(UPDATE. TRANSACTION)
(C-u + 2--Id) +((NODE. LEVE L(UPDATE.TRANSACION)-l) 'T)) MIINUTES

RETURN
END

EVENT RELEASE. LOCK GIVEN DONE. TRANSACTION

FOR 1 1 TO NU M. OF. BASESET(DONE. TRANSACTION)
DO

LOCK. LIST (BASE. TABLE(TRANSACTION. SEQ(DONE. TRANSACTION) ,I)) =0
LOOP

LOCK. STATUS = 0
LET RESPONSE. TIME = TIME.V - GEN.TIME(DONE. TRANSACTION)
LET COMM.TRAFFIC = NODE. LEVEL(DONE.TRANSACTION) * 3
LET AVERAGE. DASESET = NUM. OF. BASESET
SYSTEM. STATUS =0

IF QUEUTE1 IS NOT EMPTY
REMOVE THE FIRST TRANSACTION FROM TILE QUEUE1
QUE. INDEX = QUE. INDEX - 1
SYSTEM. STATUS = 1
CALL CHECK. LOCK

ELSE

27

IF WAIT. QUEUE IS NOT EMPTY
REMYOVE THE FIRST TRANSACTION FROM TILE WAIT. QUEUE
SYSTEM. STATUS = i
CALL CHECK. LOCK

ALWAYS
REGARDLESS
RETURN
END

ROUTINE REPORT. GENERAOR

SKIP 2 OUTPUT LINES
PRINT I LINE THUS
SI'IMULATI:.N RESULT OF TWO PHASE LOCKING ALGORITHM
SKIP i LINE
PRINT 2 LINE THUS
I. M1ODEL INPUT PARAMETER

a. MODEL DESCRIPTION
PRINT 3 LINE WITH MfAXLEVEL, LASTNODE, AND Dn THUS

1. LEVEL OF THE NETWORK:
2. N UMBER OF NODE IN NETWORK:
3. DATA ITEMS IN NETWORK:

PRINT I LINE ThUS
b. SIMPIULATION PARAMETERS

PRINT 3 LINE WITH LIMITofTRANS, RATE, AND MAXBASE THUS
1. NUMIBER OF TRANSACTION SIMNULATED
2. MEAN INTERARRTVAL TIME
3. MAXIMUM BASESET

PRINT I LINE THUS
II. RESULTS OF SIMMULATION

PRINT 2 LINE WITH AVE.RESPONSE*HOURS.V*MINUTES.V,
AVE. TRAFFIC THUS
a. THE AVERAGE RESPONSE TIME OF UPDATE TRANSACTION :
b. ilE AVERAGE NUMBER OF TRAFFIC
STOP
END

APPENDIX B. SIMULATION PROGRAM LIST FOR DVA

PREAIBLE

NORMALLY, MODE IS INTEGER

DEFINE RESPONSE. TIME TO MEAN ATRBI
EEFINE AVERAGE. BASESET TO !EAN ATRB2
DEFINE CONM. TRAFFIC TO MEAN ATRB3

EVENT NOTICES INCLUDE TRANSACTION.GEN, VOTING,
CHECK_OK

EVERY VOTING HAS A VOTING. TRANSACTION
EVERY CHECKOK HAS A CHECKING. TRANSACTION

TE FCRARY ENTITIES
EVERY TRANSACTION HAQ ' uEN.TIME, A TRANSACTION. SEQ, A IESSAGE. TYPE,

A NODE. N ' A NODE. LEVEL, A NUM. OF. BASESET, A BASE. ITEM,
A TI> _ " ' lP, A CURRENT NODE

EVERY TRANSACTIl, .-iAY BELONG TO THE QUEUE1,
AND MAY BELONG TO THE WAIT. QUEUE

THE SYSTE" OWNS THE QUEUE1, THE WAIT. QUEUE
DEFINE TLEUEl AS A FIFO SET
DEFINE W AIT. QUEUE AS A FIFO SET
DEFI'.E INITIATE AS A ROUTINE
DEF NE INPUTRTN AS A ROUTINE
DEFINE FINDSET AS A ROUTINE
DEFINE INITIALTAB AS A ROUTINE
DEFINE SENDACCEPT AS A ROUTINE
DEFINE SENDREJECT AS A ROUTINE
DEFINE SYSTEMCONTROL AS A ROUTINE
DEFINE ENQUEUE AS A ROUTINE
DEFINE REPORT. GENERATOR AS A ROUTINE

DEFINE CHILDRENTAB AS AN INTEGER, 2-DIMENSIONAL ARRAY
DEFINE PARENTTAB AS AN INTEGER, 1-DIMENSIONAL ARRAY
DEFINE DATADIR AS AN INTEGER, 2-DIMENSIONAL ARRAY
DEFINE LEVELTAB AS AN INTEGER, 1-DIMENSIONAL ARRAY
DEFINE BASE. TABLE AS AN INTEGER, 2-DIMENSIONAL ARRAY
DEFINE SETTAB AS AN INTEGER, 2-DIMENSIONAL ARRAY
DEFINE TSofDB AS A REAL, 2-DIMENSIONAL ARRAY
DEFINE STATUSTAB AS AN INTEGER, 1-DIMENSIONAL ARRAY

DEFINE GEN.TIME, RESPONSE.TIME, AVERAGE.BASESET, T, Cu, Id, Cs,
COMM.TRAFFIC, TIMESTAMP,RATE AS A REAL VARIABLES

DEFINE TRANSACTION. NUM, TRANSACTION. SEQ, MESSAGE. TYPE, NODE. NUM,

29

NODE. LEVEL, NUM. OF. BASESET, QUE. INDEX, LASTNODE,CURRENTNODE,
MINBASE, MIAXBASE, LOCK. STATUS, Dn, LIMITofTRANS, "AXLEVEL,
BASE. ITEM, COUNT, SYSTEM. STATUS, YESNO AS A INTEGER VARIABLES

DEFINE MAXPATH AS AN INTEGER VARIABLE

TALLY AVE. RESPONSE AS THE AVERAGE OF RESPONSE. TIME
TALLY AVE. BASESET AS THE AVERAGE OF AVERAGE. BASESET
TALLY AVE. TRAFFIC AS THE AVERAGE OF COMM. TRAFFIC

END

MAIN

CALL INITIALTAB
FRINT 1 LINE THUS
, YOU WANT DEFAULT MODEL ? IF YES TYPE 1

FREAD YESNO

IF YESNO <> 1
CALL INPUT_RTN
ALWAYS

SCHEDULE A TRANSACTION. GEN NOW

LET T = 0.2 MESSAGE TRANSMISSION TIME
LET Cu 0.001 CPU TIME SLICE TO COMPUTE ACTUAL VALUE OF TRANS
LET Cs = 0.00001 CPU TIMESLICE FOR SMALL COMPUTATION
LET Id = 0.025 I/O TIME SLICE TO READ OR WRITE FROM DATABASE
LET LASTNODE = 10 LAST NODE NUMBER
LET MINBASE = 1 MINIMUM NUMBER OF BASESET
LET MAXBASE = 5 MAXIMUM NUMBEROF BASESET
LET QUE. INDEX = 0 QUEINDEX
LET LOCK. STATUS = 0 IF LOCKED ALREADY THEN 1 ELSE 0
LET Dn = 1000 TOTAL DATA ITEM IN THE DATABASE
LET LIMITofTRANS =1000 '' THE NUMBER OF TRANSACTION SIMMULATED
LET MAXLEVEL = 3 '' LEVEL OF NETWORK
LET COUNT = 0 '' NUMBER OF TRANSACTION
LET TRANSACTION.NUM = 0
LET SYSTEM. STATUS = 0
LET RATE = 3
START SIMULATION
END

EVENT TRANSACTION. GEN

CREATE A TRANSACTION
ADD 1 TO TRANSACTION. NUM
LET TRANSACTION. SEQ = TRANSACTION. NUM
IF TRANSACTION. NUM IS GE LIMITofTRANS

30

CALL REPORT. GENERATOR
ALWAYS
LET I XEN. TIMIE = TIM!E. V
LET TI.IE_STAMP = TIME. V
CALL INITIATE
CALL FINDSET

SCHEDULE A TRANSACTION. GEN IN (EXPONENTIAL. F(RATE,l)) MINUTES
RETURN

END

ROUTINE INITIALTAB

RESERVE CHILREN_TAB(*,*) AS 30 BY 30
RESERVE PARENT_TAB, LEVELTAB, STATUSTAB AS 30
RESERVE DATA DIR(*,*) AS 30 BY 2
RESERVE BASE. TABLE(-,-) AS 1000 BY 5
RESERVE SETTAB(*.,*) A'; 5 BY 30
RESERVE TSofDB(*,*) AS 30 BY 1000

FOR I = 1 TO 1000
DO

FOR J = 1 TO 5
DO

BASE. TABLE(I,J) = 0
LOOP

LOOP
FOR I = 1 TO 30
DO

PARENTTAB(I) = 0
LEVEL_TAB(I) = 0
STATUSTAB(I) = 1
FOR J = 1 TO 30
DO

CHILDRENTAB(I,J) = 0
LOOP
FOR J = 1 TO 2
DO

DATADIR(I,J) = 0
LOOP
FOR J = 1 TO 1000
DO

TSofDB(I,J) = 0.0
LOOP

LOOP
FOR I = 1 TO 5
DO

FOR J = 1 TO 30
DO

SETTAB(I,J) = 0

31

LOO P
LOOP
RELEASE CHILDRENTAB, PARENTTAB, D-\TADIR, LEVEL-TAB, BASE.TABLE,

SET_TAB, TSoFDB, STATUS_TAB

END

ROUTINE INITIATE

RESERVE LEVELTAB AS 30
RESERVE DATADIR(*,*) AS 30 BY 2
RESERVE BASE. TABLEO? ,*) AS 1000 BY 5
ADD 1 TO TRANSACTrON. SEQ
NODE. NUN = TRUNG. F(UNIFOR.F(1,LASTNODE,1))
LET CURRENTNODE =NODE. NUN

IF YFSNO = I *** IF DEFAULT NETWORK
7E NODE.NUM 1 NODE.LEVEL = 1

ELSE
!F NODE. NUN 2 OR NODE. NUN = 3 OR NODE. NUN 4 NODE. LEVEL =2

ELSE
NP DE. LEVEL = 3

REGARD LESS
REVARDLESS

NUN. OF. BASESET = TRUNC.F(UNIFORM.F(nINBASE,MAXBASE,1))
LET J = TRANSACTION. SEQ

FOR I = 1 TO NUM. OF. BASE SET
Do
IF NODE.NUM = 1 BASE.TABLE(J,I) = TRUNC.F(UNIFORM.F(001,1009,1))

DATADIR(1,1) = 001
DATADIR(1,2) = 1000

ALWAYS
IF NODE.NUM = 2 BASE.TABLE(J,T) = TRUNC.F(UNIFORM.F(001,400,1))

DATADIR(2,1) = 001
DATADIR(2,2) = 400

ALWAYS
IF NODE. NUll = 3 BASE.TABLE(J,I) = TRUNC.F(UNIFORM.F(401,700,1))

DATADIR(3,1) = 401
DATADIR(3,1) = 700

ALWAYS
IF NODE. NUM = 4 BASE.TABLE(J,I) = TRUNC.F(UNIFORM.F(701,900,1))

DATADIR(4,1) = 701
DATADIR(4,2) =900

ALWAYS
IF NODE. NUM = 5 BASE.TABLE(J,I) = TRUNC.F(UNIFORM.F(1,100,1))

DATADIR(5,1) = 001
DATADIR(5,2) = 100

ALWAYS
IF NODE. NUN = 6 BASE.TABLE(J,I) = TRUNC.F(UNIFORM.F(101,200,1))

DATADIR(6,1) = 101
DATADIR(6,2) = 200

32

ALWAYS
IF NODE. NUM = 7 BASE.TABLE(JI) = TRUNC.F(UNIFORM.F(2-01,300,1))

DATADIR(7,1) = 201
DATADIR(7,2) =300

ALWAYS
IF NODE. NUM = 8 PASE.TABLE(J,I) = TRUNC.F(UNIFORM.F(401,500,1))

DATA_-DIR(8,1) = 401
DATADIR(8,2) = 500

ALWAYS
IF NODE. NUM = 9 BASE.TABLE(J,I) = TRUNC.F(UNIF.R',I.F(5O1,60,1))

D)ATlA_DTR(9 , 1) = 501
DATADIR(9,2) = 600

ALTWAYS
IF NODE. NUM = 10 BASE. TABLE(J,I)= TRUNC.F(UNIFORM.F(71,800,1))

DATA_- DIR(1O,1) =701

DATADIR(10,2) =800

ALWAYS
LJOP

LET LEVELTAV' 1) = 1
FOR I1 2 TO

LET LEVELTAB(I' = 2

FOR I =5 TO 10
DO
LE-T LEVELTAB(I) = 3
LOO,(P
ELSE IF NOT IE FAULT NETWORK

NCIDE. LEVEL = 11EVE L-TAB (NODE. NUM)
NUM."IOF. BASESET =T',RUNC. F(UNIFORI. F(M',INBASE,MIAXBASE,1))
T.ET J =TRANSACTION.NUM
FOR I 1 T 'P0 UM. OF. BASESET
DO

BASE.TABLE(J,I) = TRUNC. F(UNIFORI. F(DATA-DTR(NODE. NU'N,),
DATA-DIR(NODE. NUM1,2) , 1))

LOOP
REGARDLESS

END

ROUTINE INPUTRTN

RESERVE CHILDRENTAB(*,*) AS 30 BY 30
RESERVE LEVELTAB AS 30
RESERVE DATA-DIR(* ,*) AS 30 BY 2
RESERVE PARENTTAB AS 30
LET INDX =2
PRINT 2 LINE THUS
INPUT PARAMETERS CAREFULLY
HOW MANY NODES THE NETWORK HAVE
READ LASTNODE
PRINT 1 LINE THUS

33

WHAT IS THE LEVEL OF THE NETWORK ?
READ MAXLEVEL
FOR I = 1 TO LASTNODE
DO

PRINT 1 LINE WITH I THUS
HOW "'ANY CHILDREN DODES NODE H HAVE ?
READ J
IF J <> 0
FOR K = I TO J
DO

IF INDX <= LASTNODE
CHILDRENTAB(I,K) = INDX
PARENTTAB(INDX) = I
INDX = INDX + 1

ALWAYS
LOOP

ALWAYS
LOOP

FOR J = I TO LASTNODE
DO
P;iNT I LINE WITH J THUS
WY-AT IS THE LEVEL OF NODE * AND RANGE OF DATA ITEMl ?
READ LEVELTAB(J), DATADIR(J,I), AND DATADIR(J,2)
LOOP

PRINT 1 LINE THUS
THANK YOUR INPUT IS DONE !!!

END

ROUTINE FINDSET

' THIS ROUTINE GENERATE SETS WHICH S~i AND S°F

RESERVE LEVELTAB AS 30
RESERVE SETTAB(*,*) AS 5 BY 30
LET MAXPATH = 0
FOR I = 1 TO NUM. OF. BASESET
DO

FOR J = 1 TO LASTNODE
DO

IF BASE. TABLE(TRANSACTION. SEQ,I) >= DATA_DIR(J,1) AND
BASE. TABLE(TRANSACTION. SEQ,I) <= DATADIR(J,2)
SETTAB(I,J) = 1

ALWAYS
LOOP

LOOP

FOR I = I TO LASTNODE
DO
LET BASECOUNT = 0
LET NODE-STATUS = 0

34

FOR J = 1 TO NUM. OF. BASESET
DO

IF SETTAB(J,I) <> 0
BASECOUONT =BASECOUNT + 1
NODESTATUS I

ALWAYS
LOOP

IF NODESTATUS 1
LET CURRENTNODE = I
IF MAXPATH <= ABS. F(LEVELTAB(NODE.NUMl) - LEVELTAB(CURRENTNODE))

MAX_-PATH = ABS. F(LEVEL TAB(NODE. NUN) - LEVEL_TAB(CURRENTNODE))
ALWAYS

PRINT 5 LINE WITH NODE. NUN, CURRENT_-NODE, LEVEL-TAB(NODE. NUN),
LEVELTAB(CURRENL-NODE), BASECOUNT THUS

NODE. NUM
CURRENTNODE
LEVEL OF NODE. NUN M
LEVEL OF CURRENT NODE =*

BASE COU'-NT = ""
SCHEDULE A VOTING GIVEN TRANSACTION IN

((ABS.F(LEVELTAB(NODE.NUM) - LEVELTAB(CURRENL-NODE)) T) +
(BASECOUNT -, Id)) MINUTES

AL WAYS

SCHEDULE A CHECKOK GIVEN TRANSACTION IN ((MIAXPATH *T) + NUN. OF. BASESET)
INUTES

END

EVENT VOTING GIVEN VOTING. TRANSACTION

RESERVE TSofDB(*,*) AS 30 BY 1000
RESERVE STATUSTAB AS 30
LET OKSTATUS = 0
FOR K = 1 TO NUN. OF. BASESET(VOTING.TRANSACTION)
DO
IF SETJ- AB(K,CURRENTNODE(VOTING. TRANSACTION)) <> 0

IF TIMIESTAN"P(VOTING. TRANSACTION) >= TSofDB(CURRENT NODE(VOTING. TRANSACTION),
BASE. TABLE(TRANSACTION. SEQ(VOTING. TRANSACTION) ,K)

OKSTATUS =1

ALWAYS
ALWAYS
LOOP
IF OKSTATUS =1

TIMIESTAMIP(VOTING.TRANSACTION) = TIME.V
STATUSTAB(CURRENTNODE(VOTING. TRANSACTION)) = 1

ELSE
STATUS_.TAB(CURRENL-NODE(VOTING. TRANSACTION)) =0

REGARDLESS
RETURN

END

35

ROUTINE SENDACCEPT

FOR I = 1 TO LASTNODE
DO

FOR J = 1 TO NUM. OF. BASESET(TRANSACTION)
DO

IF SET TAB(J,I) = I
IF TSofDB(I,J) <= TIME_STAMP(TRANSACTION)

TSofDB(I,J) = TIME_STAMPTRANSACTION)
ALWAYS

ALWAYS
LOOP

LOOP
LET RESPONSE.TIME = TIME.V - GEN.TIME(TRANSACTION)
FOR I = 1 TO LASTNODE
DO
FOR J 1 TO NUM. OF. BASESET(TRANSACTION)
DO

SETTAB(J,I) = 0
LOOP
STATUSTAB(I) = 0

LOOP
CALL SYSTEMCONTROL

END

ROUTINE SENDREJECT

CALL ENCUEUE
CALL SYSTEM_CONTROL
END

ROUTINE ENQUEUE
FILE TRANSACTION IN THE QUEUE1
''ALWAYS
'' **** KEEP CONTINUE

END
ROUTINE SYSTEMCONTROL
IF QUEUE1 IS NOT EMPTY

REMOVE FIRST TRANSACTION FROM THE QUEUEl
CALL FIND-SET

ELSE

SCHEDULE TRANSACTION. GEN NOW

ALWAYS
END

36

EVENT CHECK OK GIVEN CHECKING. TRANSACTION

RESERVE STATUSTAB AS 30
ITSOK = 1
FOR I = 1 TO LASTNODE
DO
ITSOK = ITSOK * STATUSTAB(I)
LOOP
IF ITSOK <> 1

TIME STAMP(CHECKING.TRANSACTION) =TIME.V
CALL SENDACCEPT

ELSE
CALL SENDREJECT

REGARDLESS
RETURN
END

ROU TINE REPORT. GENERATOR

SKIP 2 OUTPUT LINES
PRINT 1 LINE THUS
SIIMULATION RESULT OF TWO PHASE LOCKING ALGORITHM
SKIP 1 LINE
PRINT 2 LINE THUS
I. MODEL INPUT PARAMETER

a. MODEL DESCRIPTION
PRINT 3 LINE WITH MAXLEVEL, LASTNODE, AND Dn THUS

1. LEVEL OF THE NETWORK:
2. NUMBER OF NODE IN NETWORK:
3. DATA ITEMS IN NETWORK:

PRINT 1 LINE THUS
b. SIMMULATION PARAMETERS

PRINT 3 LINE WITH LIMITofTRANS, RATE, AND MAXBASE THUS
1. NUMBER OF TRANSACTION SIMMULATED :
2. MEAN INTERARRIVAL TIME * *
3. MAXIMUM BASESET : *

PRINT 1 LINE THUS
II. RESULTS OF SIM-MULATION

PRINT 2 LINE WITH AVE. RESPONSE*HOURS. V*MINUTES.V, MINBASE THUS
a. THE AVERAGE RESPONSE TIME OF UPDATE TRANSACTION :
b. THE AVERAGE NUMBER OF BASESET:
STOP
END

37

LIST OF REFERENCES

1. 11 Ctor (jarcia- NI lia, PerJ)rmance of update alg oritlimsfior replicatd data, L~ N!II

Research Press, 1981.

2. Alan Demer, D)an Greene, and Carl H auser, Epidemic algorithms t~r replicated da-

kiabase maintenance, Proceeding of 6th Annual AC NI sy mposium on rrinciplcs of'

distributed computing, pp. 1- 11. 1K

W.X. K. Cheng. Pcifjormance anali-sis o)f update svnchronz~aizwnalotmsJrdtr

wcd databas\e, IPh.D Thesis. Department of Comnputer Sc:ience, Univ ersity of Illinois

at [,rbana-Chamnpain. Urbana. Illinois, 1981.

.4. Tse-NMen Koon, and %I. Tamner Ozsu, Perjfrmance comnparison of resilient cmicur-

ren(j, e v cntr a1gorithmns of distributed databases, I nternational Confecrence oil Data

rnp.565-573, 1986.

5. Gerorge A. Chamnpine. Ronald D. Coop, and Russel C. Ileinselm-an, Distributed

computer systems impact On maCna1gteent, design, and analysis, North-I lolland Pub-

lishiniz Co. 1980.

6. C. P. Wang and Victor 0. K. Li, G. L., A unified concurrency control algorithmns r

distributed database system, 4th International Conference on Data Engineering, pp.

410-417, 1988.

INITIAL DISTRIBUTION LIST

No. Copies

1. 1)elense Technical InFormation CenT'ter2
(onieron Station
;\levundria. VA 227,04-6 145

2. lbary, Code 01l422
Naval Posteraduate Sc-hool
Nlonterev. CA 93943-5(1(C

3. Derportment Chairma n. C ode IT C
D 1)part ment ofl Ilec tricail 11nd Compu11.ter L n,-,nerin ey

N vlPost era11duoite school
Monterey, (.A 3)3-4II

4. Pro~e-sor (Th\'an Yang. Code VC Ya 6
I)parten Of'Llc rc and C omputer V niineerineU

\,a III lU t- eraidutltte 'L hoo I
MIonterev. CA\O~-Si

5'. Profkes;,or NIx Une W., Stih Code .\S Su
D)epartment o dtinrtieSL cince
Naval IPostirLaduate School0
N onterey. (\9 93-Am

6. ROK .\rmv I lead qUarter,
Nons'an-(L11 Dn.Iuint-NIen. Bunam-ri. CP() Bo\ =2

(huc~ hn ~nm- 1o. 32()-119
Republic of' Korea

7. co. Yone Ieo

Nia al Ploste-raduate School1
Monterey. Ca 93943

S. Soniz. 11 YeonI
SMC z'Th'c
Naval Pos teradUate School
Montercv, Ca 93943

9. Jun2, Jac IDooI
s MC = 1504

* Naval Postsiraduate School
Monterey. Ca 93943

39

10. 1 Itins. un Sub
SNIC =12"')

N~vlPoszs raduaite School
Mlonterey, C'a 919)43

11. Choi. Bxuns_ Gook
S N IC =: :,s 7
Naval lPostsraduate School
Nlonterev. C'a 93943

12. Rvoo. Moo Bonu
(Jiungchungliuk-1)o. ('11Lngwon-C an. Sanchecok-NI \en.
Youn~.!eok- Ri I 1%Lavoun
Repbi-.11c of' KoreCa

13. Shinl. InI ;uh
IKoa I'lok- NI tian. Sannori 51 s
'Ka a da -GCan. (1i1.1111 Nam 3 20-84(1
Rcpa)Lb1IC af KoreaI

13 Shin, Lion Seak6

Scokvao AP F A-lDans., ",1I lo
RepuI~blic of' Korea

40

